

0957-4166(95)00419-X

Asymmetric Addition Reaction of Organozinc Reagents to Nitrones Using a Catalytic Amount of External Chiral Auxiliary

Yutaka Ukaji,* Yuuichi Kenmoku, and Katsuhiko Inomata*

Department of Chemistry, Facuhy of Science, Kanazawa University, Kakuma, Kanazawa, lshikawa 920-I 1, Japan

Abstract: Catalytic asymmetric addition reactions of dialkylzinc to nitrones are realized; *i.e.,* in the presence of a catalytic amount of bromomagnesium *(2S,3R)-4-dimethylamino-*1,2-diphenyl-3-methyl-2-butoxide, dialkylzincs were reacted with 3,4-dihydroisoquinoline N-oxide derivatives to give the corresponding 1-alkylated hydroxylamines enantioselectively. In order to achieve higher stereoselection, addition of bromomagnesium triphenylmethoxide was crucial.

Recently the enantioselective addition reactions of dialkylzinc and Grignard reagents to a nitrone, 3,4 dihydroisoquinoline N-oxide, utilizing bromomagnesium *(2S,3R)-4-dimethylamino-* 1,2-diphenyl-3-methyl-2 butoxide as a chiral auxiliary was developed to give each enantiomer of the corresponding hydroxylamines, respectively.¹ With these results in hand, we were interested in a catalytic asymmetric addition of organometallics to carbon-nitrogen double bond. In contrast to many successes in the catalytic asymmetric addition of organometallic reagents to carbonyl compounds,² examples of the catalytic asymmetric addition of organometallics to the imine function are still limited.³ Herein, we would like to report our studies on the catalytic asymmetric addition reaction of dialkylzinc to nitrones possessing dihydroisoquinoline skeleton.⁴

The reaction of 2.2 molar amounts of diethylzinc with 3,4-dihydroisoquinoline N-oxide $1A⁵$ in the presence of 1.1 molar amounts of bromomagnesium *(2S,3R)-4-dimethylamino-l,2-diphenyl-3-methyl-2* butoxide 2, prepared from Chirald^{®6} and Grignard reagent⁷ *in situ*, in THF at 25 °C gave the corresponding hydroxylamine 3a in 65% ee (Entry 1 in Table 1).⁸ In the reaction using 0.2 molar amounts of magnesium alkoxide 2, however, optical yield of the hydroxylamine disappointingly lowered to 33% ee (Entry 2). After several attempts, it was found that addition of another magnesium alkoxide generated from the corresponding alcohol and Grignard reagent⁷ in situ was effective. That is, addition of 0.2 molar amounts of bromomagnesium butoxide improved the enantioselectivity up to 45% ee (Entry 3). Among alkoxides derived from several alcohols, bromomagnesium triphenylmethoxide 4 was revealed to be the most effective for

Entry	Nitrones	Molar	Additive		R ₂ Zn ^a) Time		Products	Yield	ee _b
	$\mathbf{1}$	amounts of 2	(molar amounts)			Λ	$\overline{\mathbf{3}}$	P' o	1%
\mathbf{I}		1.1			Et ₂ Zn	13		78	65
$\overline{2}$		0.2			$E_1/2n$	16		80	33
3		0.2	nBuOMgBr	(0.2)	Et ₂ Zn	17		84	45
$\overline{4}$		0.2	<i>i</i> PrOMgBr	(0.2)	Et ₂ Zn	17	OН	84	47
5	1A	0.2	tBuOMgBr	(0.2)	Et2Zn	17	Ē١	86	43
6		0.2	Ph3COMgBr $(4)(0.2)$		Et ₂ Zn	17	3a	82	56
7		0.2	Ph3COMgBr (4)(0.3) Et2Zn			14		91	62
8		0.2	Ph3COMgBr $(4)(0.4)$ Et2Zn			24		87	56
9		1.1			Me ₂ Zn	-17		88	66
10	1A	0.2			Me ₂ Zn	17		77	21
11		0.2	Ph3COMgBr $(4)(0.3)$ Me ₂ Zn			-17	Мe 3 _b	93	58
12 	MeQ.	1.1			Et2Zn	18	MeO.	87	58
13		0.2			Et2Zn	16		60	18
14	MeO [®] 1 B	0.2	Ph3COMgBr (4)(0.3) Et2Zn			16	MeO $3c$ Et	он 97	70
15		1.1			Me ₂ Zn	17	MeO.	96	50
16	1B	0.2			Me ₂ Zn	19		91	57
17		0.2	Ph3COMgBr $(4)(0.3)$ Me ₂ Zn			-16	MeO Me 3d	он 84	63
	Me Me	1.1			Et ₂ Zn	15	Me Me	96	57c)
18	MeO				Et ₂ Zn	19	MeO	80	28c
19	MeO	0.2 0.2			Et ₂ Zn	18	MeO	он 89	78c)
20	1 ^C		Ph3COMgBr $(4)(0.3)$				Ēt 3 _e		

Table 1. The asymmetric addition reaction of dialkylzinc to nitrones 1 using catalytic amount of 2

a) 2.2 Molar amounts of dialkylzinc were used. b) Enantiomeric excess was determined by HPLC analysis (Daicel Chiralcel OD-H). c) Enantiomeric excess was determined by ¹H NMR analysis of the corresponding (R) - α -methoxy- α -(trifluoromethyl)phenylacetic acid (MTPA) ester derivatives.

the stereoselection and gave the hydroxylamine 3a in 56% ee (Entries 3-6). Furthermore, the addition of 0.3 molar amounts of 4 improved the stereoselectivity up to 62% ee (Entries 6-8). The reaction of dimethylzinc with the nitrone 1A was also examined and the similar tendency in stereochemical course was observed (Entries 9-11).

Next, asymmetric addition reaction of dialkylzinc to 6,7-dimethoxy-3,4-dihydroisoquinoline N-oxide IB was examined. Stoichiometric reaction with diethylzinc afforded the corresponding hydroxylamine 3c in 58% ee (Entry 12), while the catalytic reaction gave 3c with rather low stereoselectivity (Entry 13). In contrast, addition of 0.3 molar amounts of triphenylmethoxide 4 realized higher stereoselectivity than that in the stoichiometric reaction (Entry 14). The reaction of dimethylzinc with 1B afforded the methylated product 3d in 63% ee (Entry 17). In the case of the nitrone 1C, the dramatic effect of the additive 4 was also observed (Entries 18-20) and the hydroxylamine 3e was obtained in 78% ee (Entry 20). These results are summarized in Table 1.

The stereochemistry of the newly formed chiral center in 3d was determined by conversion to salsolidine;^{4b, 9} *i.e.*, reduction⁵ of the hydroxylamine 3d (50% ee) obtained by the reaction of 1B with Me₂Zn gave salsolidine (α]_D²⁵ +31 (c 1.89, EtOH)) in 92% yield, whose configuration was confirmed to be R by the comparison of its specific rotation with that reported for (R)-salsolidine ($\left[\alpha\right]_D^2$ +62.8 (c 0.1, EtOH)). ^{9e} The stereochemistry of the stereogenic center in 3b had been already determined to be $R¹$

Although the precise mechanism of the present reaction is still an open question, the role of bromomagnesium triphenylmethoxide 4 might be explained as follows: Dialkylzinc would react with the nitrone coordinated to magnesium alkoxide of Chirald[®] (depicted as 5) from the less hindered re-face to afford $6¹$ In the catalytic system, 2 should be regenerated accompanied with the production of 8. Without triphenylmethoxide 4, the rate of regeneration of 2 might be slow and dialkylzinc would react with nitrone uncoordinated to 2 without stereoselection. In the presence of 4, the alkylated adduct 6 would react with alkoxide 4 to give 7 and chiral auxiliary 2 would be smoothly regenerated (Scheme 1). Furthermore, it is also probable that magnesium in triphenylmethoxide 4 might be also coordinated by oxygen of nitrone to produce the complex 9. The si-face of nitrone 9 would be effectively shielded and alkylation would proceed from *re*face stereoselectively (Fig. 1 shows the complex 9 corresponding to 1A) and the adduct immediately dissociates into 2 and 7 followed by reproduction of 9.

In summary, we have demonstrated the catalytic asymmetric addition reaction of dialkylzinc to carbonnitrogen double bond and the present reaction provided a facile method for the synthesis optically active 1 alkyltetrahydroisoquinoline alkaloids such as (R)-salsolidine.

References and Notes

- 1) Y. Ukaji, T. Hatanaka, A. Ahmed, and K. lnomata, *Chem. Lett.,* 1993, 1313.
- 2) K. Tomioka, *Synthesis,* 1990, 541; R. Noyori and M. Kitamura, *Angew. Chem., Int. Ed. Engl.,* 30, 49 (1991); K. Soai and S. Niwa, *Chem, Rev.,* 92, 833 (1992) and references cited therein.
- 3) I. lnoue, M. Shindo, K. Koga, and K. Tomioka, *Tetrahedron,* 50, 4429 (1994); K. Soai, T. Suzuki, and T. Shono, *J. Chem. Soc., Chem. Commun.,* 1994, 317; S. E. Denmark, N. Nakajima, and O. J.-C. Nicaise, *J. Am. Chem. Soc.*, **116**, 8797 (1994) and references cited therein.
- 4) Recent reports on asymmetric synthesis using nitrones: a) S.-I. Murahashi, Y. Imada, M. Kohno, and T. Kawanami, *Synlett,* 1993, 395; b) S,-I. Murahashi, J. Sun, and T. Tsuda, *Tetrahedron Lett.,* 34, 2645 (1993); c) S.-I. Murahashi, S. Watanabe, and T. Shiota, *J. Chem. Soc., Chem. Commun.,* 1994, 725.
- 5) Nitrones 1 were prepared from the corresponding tetrahydroisoquinolines: S.-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, and S. Watanabe, *J. Org. Chem.,* 55, 1736 (1990).
- 6) Catalytic asymmetric addition reaction of organozinc reagents to aldehydes using Chirald \mathcal{B} was reported: G. Muchow, Y. Vannoorenberghe, and G. Buono, *Tetrahedron Lett.*, 28, 6163 (1987); E. Laloë and M. Srebnik, *ibid.,* 35, 5587 (1994).
- 7) Butylmagnesium bromide or phenylmagnesium bromide was used.
- 8) Previously we reported that the reaction of diethylzinc with 1A in the presence of 2 gave 3a in 57% ee.¹⁾ After further experiments, the use of fairly purified crystalline 1A was found to realize higher selection.
- 9) Recent reports on the asymmetric synthesis of salsolidine: a) R. Noyori, M. Ohta, Y. Hsiao, M. Kitamura, T. Ohta, and H. Takaya, *J. Am. Chem. Soc.,* 108, 7117 (1986); b) R. E. Gawley, G. Hart, M. Goicoechea-Pappas, and A. L. Smith, *J. Org. Chem.,* 51, 3076 (1986); c) A. I. Meyers, D. A. Dickman, and M. Boes, *Tetrahedron,* 43, 5095 (1987); d) R. P. Polniaszek and C. R. Kaufman, *J. Am. Chem. Soc,* 111, 4859 (1989); e) M. Yamato, K. Hashigaki, N. Qais, and S. Ishikawa, *Tetrahedron,* 46, 5909 (1990); f) C. A. Willoughby and S. L. Buchwald, *J. Am. Chem. Soc.,* 116, 11703 (1994).

(Received in Japan 7 November 1995)